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1 Generic pipeline examples in PaPy

To illustrate the general use of PaPy as a toolkit for workflowdesign, construction, and execution, several
examples of common pipeline patterns (simple forks/joins, produce/spawn/consume,etc.) are included in
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the ‘doc/examples’ directory of the source-code distribution. The followingsubsections present Python
code for two typical scenarios: A generic fork/join pipeline (§1.1), and a workflow that illustrates the
incorporation of theNuBio package (§1.2). Both code samples are annotated with descriptive comments,
particularly as regards segments that are specific to PaPy and its usage.

1.1 Prototype for a forked pipeline

The following code for this generic example can also be foundin the PaPy source as ‘doc/workflo-
ws/pipeline.py’:

1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3 """
4 This file (doc/workflows/pipeline.py in the PaPy src) provides a prototype of a
5 pipeline; use it as a starting-point to construct your own pipelines. The
6 construction of a pipeline can be split into distinct parts, for several
7 reasons. Most importantly, this makes the logic of your code more modular, as
8 it detaches the definition of a workflow from the actual runtime (i.e. the real
9 data and computational resources to solve the particular instance of the

10 problem at hand). Furthermore, this approach simplifies workflow execution and
11 record-keeping (provenance) by allowing one to group all the necessary elements
12 into a single executable script file.
13

14 All steps in the following workflow are as explicit as possible. If you prefer
15 to use a less flexible (but more compact and implicit) approach, via the API
16 features, then please refer to the documentation.
17

18 xrange
19 |
20 fork (linear)
21 / \
22 L R (parallel, signle shared resource)
23 \ /
24 join (linear)
25 |
26 print
27

28 """
29

30 #-------------------------------------------------------------------------------
31 # Part 0: Import the PaPy infrastructure.
32 # interface of the API:
33 from papy import Plumber, Piper, Worker
34 from papy.util.func import print_
35 # NuMap provides parallel/distributed worker-pool functionality and the
36 # ’imports’ wrapper:
37 from numap import NuMap, imports
38 # logging support:
39 import logging
40 from papy.util.config import start_logger
41 start_logger(log_to_stream=True, log_to_stream_level=logging.ERROR)
42

43 #-------------------------------------------------------------------------------
44 # Part 1: Define user functions
45 def fork(inbox):
46 msg = inbox[0]
47 return msg
48

49 @imports([’socket’, ’os’, ’threading’])
50 def who_am_i(inbox):
51 """
52 This function identifies the host process.
53 """
54 return "process:%s" % os.getpid()
55
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56 def join(inbox):
57 left_branch, right_branch = inbox
58 return "joined result from %s and %s" % (left_branch, right_branch)
59

60

61 #-------------------------------------------------------------------------------
62 # Part 2: Define the topology
63 def pipeline(resource):
64 # initialize Worker instances (i.e. wrap the functions).
65 w_fork = Worker(fork)
66 w_who_am_i = Worker(who_am_i)
67 w_join = Worker(join)
68 # initialize Piper instances (i.e. attach functions to runtime)
69 p_fork = Piper(w_fork, name=’Fork’)
70 L = Piper(w_who_am_i, parallel=resource, branch=1)
71 R = Piper(w_who_am_i, parallel=resource, branch=2)
72 p_join = Piper(w_join, name=’Join’)
73 p_print = Piper(print_)
74 # create the pipeline and connect pipers
75 workflow = Plumber()
76 workflow.add_pipe((p_fork, L))
77 workflow.add_pipe((p_fork, R))
78 workflow.add_pipe((L, p_join))
79 workflow.add_pipe((R, p_join))
80 workflow.add_pipe((p_join, p_print))
81 return workflow
82

83 #-------------------------------------------------------------------------------
84 # Part 3: Parse the arguments
85 def options(args):
86 size = int(args.get(’--size’, 10))
87 worker_num = int(args.get(’--worker_num’, 4))
88 return (size, worker_num)
89

90 #-------------------------------------------------------------------------------
91 # Part 4: Define the compute resources
92 def resources(args):
93 size, worker_num = args
94 rsrc = NuMap(worker_num=worker_num)
95 return rsrc
96

97 #-------------------------------------------------------------------------------
98 # Part 5: Create the input data
99 def data(args):

100 size, worker_num = args
101 return xrange(size)
102

103 #-------------------------------------------------------------------------------
104 # Part 6: Execute
105 if __name__ == ’__main__’:
106 # get command-line arguments using getopt
107 import sys
108 from getopt import getopt
109 args = dict(getopt(sys.argv[1:], ’’, [’size=’, ’worker_num=’])[0])
110 # parse options
111 opts = options(args)
112 # definie/initialize resources
113 rsrc = resources(opts)
114 # define/create input data
115 inpt = data(opts)
116 # attach resources to pipeline
117 workflow = pipeline(rsrc)
118 # connect and start pipeline
119 workflow.start([inpt])
120 # run and wait until pipeline is finished
121 workflow.run()
122 workflow.wait()
123 workflow.pause()
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124 workflow.stop()
125 print "Runtime: %.2fs" % workflow.stats[’run_time’]

1.2 A simple, specific workflow using NuBio

The code for the following example can be found in the PaPy source as ‘doc/examples/hello_work-
flow.py’:

1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3

4 #-------------------------------------------------------------------------------
5 # Step 0 (importing the library)
6 from numap import NuMap, imports
7 from papy.core import Worker, Piper, Plumber
8 from nubio import AaSeq, NtSeq
9 # For optional logging functionality:

10 # from papy.util.config import start_logger
11 # Log to both session stream and file (default name ’PaPy_log’, to which
12 # results will be appended):
13 # start_logger(log_to_file=True, log_to_stream=True)
14

15

16 #-------------------------------------------------------------------------------
17 # Step 1 (writing a worker function)
18 # clean_Seq takes a raw sequence, creates an array object of amino- or
19 # nucleic- acid and replaces certain characters. It can be used as follows
20 # >>> arr = clean_seq([’AGA.TA’], type=’aa’, fixes=[(’.’, ’-’)])
21 # >>> print arr
22 def clean_seq(inbox, type, fixes):
23 seq = inbox[0]
24 if type == ’aa’:
25 arr = AaSeq(seq)
26 elif type == ’nt’:
27 arr = NtSeq(seq)
28 else:
29 raise ValueError("unknow sequence type %s" % type)
30 for bad, good in fixes:
31 arr.str(’replace’, bad, good)
32 return arr
33

34 # timestamp take an array object and annotates it with the current data.
35 # the function depends on the ‘‘time‘‘ module, attached to the function
36 # definition via the ‘‘imports‘‘ decorator. It is simply called:
37 # >>> arr = timesamp([arr])
38 # >>> print arr.meta[’timestamp’]
39 @imports([’time’])
40 def timestamp(inbox):
41 arr = inbox[0]
42 arr.meta[’timestamp’] = "%s_%s_%s@%s:%s:%s" % time.localtime()[0:6]
43 return arr
44

45 #-------------------------------------------------------------------------------
46 # Step 2 (wrapping function into workers)
47 # wraps clean_seq and defines a specific sequence type and fixes
48 cleaner = Worker(clean_seq, kwargs={’type’:’aa’, ’fixes’:[(’.’, ’-’)]})
49 # >>> arr = cleaner([’AGA.TA’])
50 # wraps timestamp
51 stamper = Worker(timestamp)
52 # >>> arr = stamper([arr])
53

54 #-------------------------------------------------------------------------------
55 # Step 3 (representing computational resources)
56 # creates a resource that allows to utilize all local processors
57 local_computer = NuMap()
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58

59 #-------------------------------------------------------------------------------
60 # Step 4 (creating processing nodes)
61 # this attaches a single computational resource to the two processing nodes
62 # the stamper_node will be tracked i.e. it will store the results of computation
63 # in memory.
64 cleaner_node = Piper(cleaner, parallel=local_computer)
65 stamper_node = Piper(stamper, parallel=local_computer, track=True)
66

67 #-------------------------------------------------------------------------------
68 # Step 5 (constructing a workflow graph)
69 # we construct a workflow graph add the two processing nodes and define the
70 # connection between them.
71 workflow = Plumber()
72 workflow.add_pipe((cleaner_node, stamper_node))
73

74 #-------------------------------------------------------------------------------
75 # Step 6 (execute the workflow)
76 # this starts the workflow, processes data in the "background" and waits
77 # until all data-items have been processed.
78 workflow.start([[’AGA.TA’, ’TG..AA’]])
79 workflow.run()
80 workflow.wait()
81 results = workflow.stats[’pipers_tracked’][stamper_node][0]
82 for seq in results.values():
83 print "Object \"%s\" has time stamp: %s " % (seq, seq.meta[’timestamp’])

2 An intricate example: Simulation-based loop refinement

2.1 Overview of this workflow

Using simulation-based refinement of homology model loops as an example from structural bioinformatics,
this use-case shows that rather intricate workflows can be expressed as PaPy pipelines. In particular, this
workflow processes batches of homology models and attempts to refine the loop structuresvia successive
stages of energy minimization, equilibration, and then brief molecular dynamics (MD) simulations. As
mentioned in the main text, this workflow was implemented notto address the specific scientific problem
of loop refinement (there are alternative, potentially better approaches; see (1) and references therein for a
recent study in this area), but rather to illustrate the usage of PaPy in constructing and enacting an intricate,
multi-stage, parallelized workflow.

2.2 A walk through the steps in this workflow

This workflow provides a concrete example of several PaPy-related concepts, including(i) Data import
and parsing (the input is a ModBase XML file specifying the starting homology models);(ii) the func-
tion/Worker/Piper relationship (Fig. 1 of the text), including chaining functions into a single composite
Worker; (iii) multiple streams of data-flow (see the branch points in Fig. 5of the main text);(iv) implemen-
tation of common workflow patterns, such as theproduce/spawn/consumeidiom (piper-6, layer-7, piper-8
in Fig. 5); and(v) integration of external software packages, such as STRIDE (2) and MMTK (3), into a
pipeline.

This case-study is lengthy and dense (§2.3 below), but the modular design of the pipeline code makes
it more interpretable, without obscuring the underlying workflow logic. This pipeline processes batches
of homology models of the Sm-like protein ‘Hfq’, downloadedfrom a database of comparative structural
models (MODBASE; (4)). The overall workflow (Fig. 5) refines the 3D model structures via successive
steps of(i) minimization/equilibration of the starting structure for each model, followed by (ii) multiple,

Cieślik & Mura 5 of 17



Bioinformatics pipelines in PaPy Additional File

N’

C’

Figure S1: Backbone Cα traces are shown for one of
the LSm homology models (Q6F9W2) used in this case-
study; for clarity, theN- andC-termini are labelled, and
arrows denote local strand directionality. Successive
stages of refinement are indicated as blue hues ramped
from dark (initial structure) to medium (minimization,
equilibration) to light (refined model). TheMD

loop
n sys-

tems (Fig. 5), comprised of loop residues and neigh-
bors, are indicated by bounding spheres centered on the
characteristicβ -turn loops 1 (red), 2 (orange), 3 (yel-
low), 4 (green), and 5 (blue) of the≈70-residue LSm
fold; these subsystems areproducedin the middle of the
workflow (Fig. 5), spawnshort MD simulations, and
are thenconsumedin the ‘combine_loop_models’
reduction step.

independent MD simulations, run in parallel for each separate loop of each model. As shown in the workflow
schematic (Fig. 5), theequilibrate_model processing node consists of chained workers; the first worker
performsin vacuopotential energy minimization, followed by a worker specifying thermalization and short
dynamics runs at 300 K. One downstream fork of the model equilibration node then calls STRIDE to assign
secondary structure labels to residues (based on backboneφ -ψ values), and individual loops are identified
on-the-fly, as contiguous stretches of residues that are neitherα-helical norβ -sheet. In the next set of steps,
each loop of the pre-equilibrated model is then refined, in parallel (the spawned ‘MDn’ pipers in Fig. 5).
Using an algorithm written specifically for this use-case (see thecall_stride,define_loops,cre-
ate_loop_models steps near lines 110-220 of the code), the equilibrated starting model is partitioned
into (possibly overlapping) spherical regions centered ateach loop (Fig. S1 above). Each such region
contains all residues comprising the loop, in addition to surrounding residues with which the loop might
interact; this bounding sphere is padded with a 5 Å cushion, as set by ‘sphere_margin’ in the ‘w_cre-
ate_loop_models’ worker (near line 300). The positions of other residues (distal to the loop) are fixed
during the short MD simulations. For a model withn loops, then loop-refined structures are then merged,
together with the non-loop region, in the final stages of the workflow (pipers 8 and 9 in Fig. 5); in this last
step, final coordinates are obtained by updating the atomic positions of all loop residues in the equilibrated
model with the configurations from the per-loop MD simulations.

2.2.1 Structure of the code

This sample pipeline highlights several features of PaPy. First and foremost, it demonstrates PaPy’s role as
a toolkit for the design and execution of parallel and distributed pipelinesin the context of Python. PaPy
pipelines are expressed as Python scripts that simply call upon the ‘papy’ module (see,e.g., ‘from papy
import ...’ statements). Though there are no fixed rules or constraintson how Python code should be
structured, a modular design leads to cleaner, re-usable code that is more easily maintained and interpreted
by others. As is the case with many algorithms, a natural feature of workflows is that various aspects of the
code are independent and logically separable – low-level function definitions can be insulated from higher-
level pipeline components (specification of pipeline topology, definition of worker-pools), and this level
can be shielded from overall details of workflow execution/monitoring/logging. This natural decoupling
between function code, workflow topology, and parameters/compute resources guided the design of the
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loop-refinement pipeline: In the code shown in §2.3, the basic functionality (e.g., computing loop bound-
aries) is defined in the largeStage 1 block (lines≈25-270), whileStage 2 assembles pipers and workers
into a specific pipeline topology (lines≈270-360), andStage 3 executes the workflow.

2.2.2 Functions, workers, and pipers

Together with a problem-specific set of parameters (passed as arguments), the functionality defined inStage
1 is used to create callable objects (Workers) that define the low-level activities of the workflow. This low-
level behavior is encapsulated as pipeline-specific workers (see the segment ofWorker definitions near lines
270-318), and is combined inStage 2 with parallel worker-pool definitions (NuMap objects) to create pipers
(see thePiper instantiations near lines 320-335). The pipeline topology, and therefore pattern of data-flow,
is defined inStage 2 by the interconnections between Piper nodes (see §2.2.3below).

As previously noted,Workers and their wrapped functions can be flexibly defined in PaPy: TheStage
1 procedures may correspond to nothing more than ordinary, user-defined Python functions (e.g., ‘cre-
ate_dummy_files’ near line 30). Alternatively, external Python libraries can be used (e.g., the MMTK-
wrapping ‘create_model’ near line 45), as can third-party, non-Python executables(e.g., the STRIDE-
based ‘call_stride’ near line 110) or web-accessible data/services. The first argument to these func-
tions is a Python tuple, containing the results from all incoming pipes when the function is to be used in a
workflow. The (optional)imports decorator can be used to attach Python ‘import’ statements to function
code, thereby allowing the function to be evaluated remotely (Python modules required by the imported
function also must be present on the remote host). Finally, as an example of the strategy of composing
functions to collapse a pipeline segment into a single node and avoid unnecessary IPC (Fig. 1), note that the
energy minimization and thermal equilibration operations(defined as separate workers near lines 280 and
290, respectively) are composed into a singleWorker instance (‘w_minimize_equilibrate_model’)
near line 300; this is also indicated schematically in Fig. 5.

2.2.3 Pipes and branches

Data-flow through the pipeline is literally defined by creating pipes between pairs or sequences of nodes, as
shown by the ‘.add_pipe’ method invocations near lines 340-360. Note that the pipeline has a branch
point after creation of an equilibrated 3D model (piper 3 in Fig. 5) and two merge points (at pipers 6 and
9). The two mergings correspond to(i) creation of spherical loop regions (Fig. 5, green and black arrows
feeding into piper 6) and(ii) assembly of the final refined model (Fig. 5, gray and black arrows into piper
9). In general, a branch might be used to propagate data directly between functions in different places
of a pipeline, or to carry-out sub-tasks. In the present loop-refinement workflow, a sample ‘sub-task’ is
identification of the loops in a protein, based on secondary structure assignments computed by STRIDE.

2.2.4 Parallel processing

Ideally, a workflow would exhibit efficient execution on datasets of ever-increasing scale (scalability); this
issue becomes especially acute with CPU-intensive methods, such as atomistic simulations oromics-scale
datasets. Parallel evaluation offers an approach to handling larger-scale datasets and, depending on the de-
gree of coupling between individual data-items, may occur at the level of a pipeline node or at the level of the
overall workflow topology. An example of the former (node-level) would be an individual MD worker node
executing in multi-threaded manner over many cores, and an example of the latter (workflow-level) would be
produce/spawn/consume to distribute calculations. A PaPy workflow can implement different varieties of
parallel evaluation at the node- or pipeline-level, including local/remote and multi-threaded/multi-processor
parallelism (Fig. 1B). TheNuMap facility supplies PaPy with a unified interface for handlingworker-pools
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(parallel or not), and therefore provides a common mechanism for handling parallelism and assigning com-
putational resources to processing nodes. By default,NuMap instances utilize all locally-available CPUs.
For the loop-refinement workflow, a ‘local_computer’ worker-pool resource is defined (near line 270)
as a 2-workerNuMap instance, using a relatively high value of 100 for the ‘buffer’ argument. (Thebuffer
sets an upper-limit on the number of memory-buffered elements [input and pending results], as further
described in the documentation for theNuMap class.) The most computationally-expensive nodes in the
loop-refinement workflow – equilibration (piper-3 in Fig. 5,line 324) and MD simulations (pipers 7.n in
Fig. 5, line 330) – are assigned to the parallel pool.

In conclusion, note that loop-refinement, as a PaPy pipeline, is parallelizable at several simultaneous
levels: (i) Processing of (independent) input homology models is trivially parallel. (ii) A single data-item
(a given homology model traversing the pipeline) is parallelized by partitioning it into discrete 3D spatial
regions, spawning multiple short MD runs centered on each loop in turn.(iii) Depending on the capabilities
of the simulation code, numerical integration of MD trajectories for each such loop can be performed in a
highly-efficient, parallel manner. As illustrated by the present workflow, parallel processing at levels(i) and
(ii) can be achievedvia PaPy.

2.3 Python code for this workflow

The following code was tested on Linux workstations (Fedoraand Gentoo distributions) with recent stable
releases of Python (2.6.5) and MMTK (2.7.2).

1 #!/usr/bin/env python
2 """
3 """
4 #-------------------------------------------------------------------------------
5 # Stage 0: Import PaPy and related (NuMap) infrastructure; see online docs
6 # for complete description of the API.
7

8 # papy and numap modules:
9 from papy.core import Worker, Piper, Plumber

10 # the parallel NuMap worker-pool functionality and imports wrapper:
11 from numap import NuMap, imports
12

13 # logging support
14 from logging import getLogger
15 from papy.util.config import start_logger, get_defaults
16 start_logger(log_to_file=False, log_to_stream=True)
17 # following version is less noisy (no logging to stream):
18 # start_logger(log_to_file=False, log_to_stream=False)
19

20 import sys
21 sys.stderr = open(’/dev/null’, ’w’)
22 LOOP_NUM = 10 # maximum number of loops to consider in homology models
23

24

25 #-------------------------------------------------------------------------------
26 # Stage 1: Define the functions that dictate the low-level functionality of the
27 # workflow
28 @imports([’re’, ’StringIO’])
29 def create_dummy_files(input_file):
30 handle = open(input_file)
31 match_content = re.compile(’<content>(.*?)</content>.*?UP (.*?)\s+\d’, re.DOTALL)
32 file_strings = match_content.finditer(handle.read())
33 model = 0
34 while True:
35 file_content, model_name = file_strings.next().groups()
36 yield (StringIO.StringIO(file_content), model_name)
37 model += 1
38 # To do only first 2 models (not all of them):
39 if model == 2:
40 raise StopIteration
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41

42 @imports([’MMTK’, ’MMTK.PDB’, ’MMTK.Proteins’, ’MMTK.ForceFields’])
43 def create_model(inbox, forcefield, save_file):
44 dummy_file, model_name = inbox[0]
45 print ’create_model: %s’ % model_name
46 # create the protein
47 configuration = MMTK.PDB.PDBConfiguration(dummy_file)
48 chains = configuration.createPeptideChains()
49 protein = MMTK.Proteins.Protein(chains)
50 # create the forcefield
51 if forcefield == ’amber94’:
52 forcefield = MMTK.ForceFields.Amber94ForceField()
53 elif forcefield == ’amber99’:
54 forcefield = MMTK.ForceFields.Amber99ForceField()
55 # create and fill the universe
56 universe = MMTK.InfiniteUniverse(name=model_name)
57 universe.setForceField(forcefield)
58 universe.protein = protein
59 # ...and, optionally, write-out the initial coordinates to a PDB file:
60 if save_file:
61 universe.protein.writeToFile(’results/%s_initial.pdb’ % universe.name)
62 return universe
63

64 @imports([’MMTK.Trajectory’, ’MMTK.Minimization’])
65 def minimize_model(inbox, steps, convergence, save_file, save_log):
66 universe = inbox[0]
67 print ’minimize_model: %s’ % universe.name
68 actions = []
69 if save_log:
70 actions.append(
71 MMTK.Trajectory.LogOutput(’results/%s_minimization.log’ % universe.name))
72 minimizer = MMTK.Minimization.ConjugateGradientMinimizer(universe, actions=actions)
73 minimizer(convergence=convergence, steps=steps)
74 if save_file:
75 universe.protein.writeToFile(’results/%s_minimized.pdb’ % universe.name)
76 return universe
77

78 @imports([’MMTK’, ’MMTK.Dynamics’, ’MMTK.Trajectory’])
79 def equilibrate_model(inbox, steps, T_start, T_stop, T_step, save_file, save_log):
80 # ’T’ refers to Temperature (in K)
81 universe = inbox[0]
82 print ’equilibrate_model: %s’ % universe.name
83 universe.initializeVelocitiesToTemperature(T_start * MMTK.Units.K)
84 integrator = MMTK.Dynamics.VelocityVerletIntegrator(universe,
85 delta_t=1. * MMTK.Units.fs)
86 actions = [
87 # Heat from T_start K to T_stop K, applying a temperature
88 # change of T_step K/fs; scale velocities at every step.
89 MMTK.Dynamics.Heater(T_start * MMTK.Units.K,
90 T_stop * MMTK.Units.K,
91 T_step * MMTK.Units.K / MMTK.Units.fs,
92 0, None, 1),
93 # Remove global translation every 50 steps.
94 MMTK.Dynamics.TranslationRemover(0, None, 50),
95 # Remove global rotation every 50 steps.
96 MMTK.Dynamics.RotationRemover(0, None, 50)]
97 if save_log:
98 # log output to file:
99 actions.append(MMTK.Trajectory.LogOutput(

100 ’results/%s_equilibration.log’ % universe.name))
101 # execute it:
102 integrator(steps=steps, actions=actions)
103 if save_file:
104 universe.protein.writeToFile(
105 ’results/%s_equilibrated.pdb’ % universe.name)
106 return universe
107

108 @imports([’subprocess’])
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109 def call_stride(inbox):
110 # Using the program ’Stride’ for loop determination...
111 universe = inbox[0]
112 print ’call_stride on model: %s’ % universe.name
113 filename = "results/%s_equilibrated.pdb" % universe.name
114 process = subprocess.Popen(’stride %s’ % filename, shell=True,
115 stdin=subprocess.PIPE,
116 stdout=subprocess.PIPE)
117 # Parsing Stride-specific output (e.g. the following ’ASG’ business):
118 output = []
119 for line in process.stdout.xreadlines():
120 if line.startswith(’ASG’):
121 res_name = line[5:8] # we use 3
122 chain_id = line[9]
123 if chain_id == ’-’: # stride ’ ’ -> ’-’ rename
124 chain_id = ’ ’
125 try:
126 res_id = int(float(line[10:15]))
127 res_ic = ’ ’
128 except ValueError:
129 res_id = float(line[10:14])
130 res_ic = line[14]
131 ss_code = line[24]
132 phi = float(line[43:49])
133 psi = float(line[53:59])
134 asa = float(line[62:69])
135 output.append((res_id, ss_code))
136 # output[(chain_id, (res_name, res_id, res_ic))] =
137 # (ss_code, phi, psi, asa)
138 if not output:
139 # this propably means a Calpha only chain has been supplied
140 raise RuntimeError
141 return output
142

143 def define_loops(inbox, min_size, max_gaps):
144 print ’define loops’
145 stride_results = inbox[0]
146 loops = []
147 new = True
148 for res_id, ss_code in stride_results:
149 if ss_code in (’E’, ’H’):
150 new = True
151 continue
152 else:
153 if new:
154 loops.append([])
155 new = False
156 loops[-1].append(res_id)
157 return loops
158

159 @imports([’MMTK’, ’MMTK.Proteins’, ’MMTK.PDB’, ’os’])
160 def create_loop_models(inbox, loop_num, sphere_margin, save_file):
161 # This function does much of the heavy-lifting that is specific to this
162 # pipeline (i.e., it creates the loop models...).
163 loops, universe = inbox
164 print ’create loop models: %s’ % universe.name, loops
165 residues = universe.protein.residues()
166 loop_models = []
167 try:
168 for i, loop in enumerate(loops):
169 # Determine which residues belong to a loop, grouping them as an
170 # MMTK ’Collection’:
171 loop_res = MMTK.Collections.Collection()
172 for res_id in loop:
173 loop_res.addObject(residues[res_id - 1])
174 # Determine a bounding sphere for the residues:
175 bs = loop_res.boundingSphere()
176 # select all residues in protein within the sphere plus margin
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177 loop_sphere = residues.selectShell(bs.center, bs.radius + sphere_margin)
178 # Determine the offset of the loop
179 offset_protein = loop[0] - 1
180 offset_loop = list(loop_sphere).index(residues[offset_protein])
181 #### Create new universe
182 # save the sphere around the loop as a new file
183 loop_name = "%s_loop%s" % (universe.name, i)
184 loop_file = ’results/%s_equilibrated.pdb’ % loop_name
185 pdb_file = MMTK.PDB.PDBOutputFile(loop_file)
186 pdb_file.write(loop_sphere)
187 pdb_file.close()
188 # load the new file as if it was a proper chain (the loop is proper)
189 # MMTK writes terminal forms of residues
190 configuration = MMTK.PDB.PDBConfiguration(loop_file)
191 chain = MMTK.Proteins.PeptideChain(configuration.peptide_chains[0],
192 #n_terminus=(offset_protein == 0),
193 n_terminus=loop_sphere[0] == residues[0],
194 c_terminus=loop_sphere[-1] == residues[-1])
195 protein = MMTK.Proteins.Protein(chain)
196 loop_universe = MMTK.InfiniteUniverse(name=loop_name)
197 loop_universe.setForceField(universe.forcefield())
198 loop_universe.protein = protein
199 loop_residues = loop_universe.protein.residues()
200 # now fix all atoms which are not the initial loop
201 # select real loop residues
202 left_residues = loop_residues[0:offset_loop]
203 right_residues = loop_residues[offset_loop + len(loop):]
204 #print ’loop: %s’ % (i + 1,)
205 #print ’residues in loop: %s’ % list(residues[offset_protein:offset_protein + len(loop)])
206 #print ’residues in shell: %s’ % list(loop_sphere)
207 #print ’residues to be fixed: %s’ % (left_residues + right_residues)
208 for residue in left_residues + right_residues:
209 for atom in residue.atomList():
210 atom.fixed = True
211 loop_models.append((loop_universe, (offset_loop, offset_protein, len(loop))))
212 if not save_file:
213 os.unlink(loop_file)
214 except Exception, e:
215 print i, loop, list(loop_sphere), e
216 raise
217 print ’created loop models: %s’ % loop_models
218 for i in xrange(loop_num - len(loop_models)):
219 loop_models.append(None)
220 return loop_models
221

222 @imports([’MMTK’, ’MMTK.Dynamics’, ’MMTK.Trajectory’])
223 def md_loop_model(inbox, steps, temp, save_file, save_trajectory, save_log):
224 # The following is for produce/spawn/consume-related padding:
225 if inbox[0] is None:
226 return None
227 loop_universe = inbox[0][0]
228 print ’md of loop model: %s’ % loop_universe.name
229 actions = []
230 if save_log:
231 actions.append(MMTK.Trajectory.LogOutput(’results/%s_refinement.log’ % \
232 loop_universe.name))
233 if save_trajectory:
234 traj = MMTK.Trajectory.Trajectory(loop_universe, "%s.nc" % loop_universe.name, "w")
235 # Write every second step to the trajectory file.
236 actions.append(MMTK.Trajectory.TrajectoryOutput(traj, \
237 ("time", "energy", "thermodynamic", "configuration"),
238 0, None, 2))
239

240 loop_universe.initializeVelocitiesToTemperature(temp * MMTK.Units.K)
241 integrator = MMTK.Dynamics.VelocityVerletIntegrator(loop_universe, delta_t=1. * MMTK.Units.fs)
242 integrator(steps=steps, actions=actions)
243 if save_trajectory:
244 traj.close()
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245 if save_file:
246 loop_universe.protein.writeToFile(’results/%s_refined.pdb’ % loop_universe.name)
247 return inbox[0]
248

249 def combine_loop_models(inboxes):
250 print ’collect loop models model’
251 loop_universes_offsets = [i[0] for i in inboxes if i[0] is not None]
252 return loop_universes_offsets
253

254 @imports([’itertools’])
255 def make_refined_model(inbox, save_file):
256 combined, initial = inbox
257 print ’make refined model: %s’ % initial.name
258 residues = initial.protein[0].residues() # residues in the first peptide chain
259 for loop_universe, (offset_loop, offset_protein, len_loop) in combined:
260 initial_residues = residues[offset_protein:offset_protein + len_loop]
261 refined_residues = loop_universe.protein[0].residues()[offset_loop:offset_loop + len_loop]
262 for ir, rr in itertools.izip(initial_residues, refined_residues):
263 for ia, ra in itertools.izip(ir.atomList(), rr.atomList()):
264 ia.setPosition(ra.position())
265 if save_file:
266 initial.protein.writeToFile(’results/%s_refined.pdb’ % initial.name)
267

268

269 #-------------------------------------------------------------------------------
270 # Stage 2: Define the workflow’s Workers and Pipers
271 def pipeline():
272 local_computer = NuMap(worker_num=2, buffer=100)
273 pipes = Plumber()
274 # initialize Worker instances (i.e. wrap the functions)...
275 w_create_model = Worker(create_model, kwargs={
276 ’forcefield’: ’amber99’,
277 ’save_file’:True
278 })
279 # 100 steps of minimization found to be enough for convergence:
280 w_minimize_model = Worker(minimize_model, kwargs={
281 ’steps’: 150,
282 ’convergence’:1.0e-4,
283 ’save_log’:True,
284 ’save_file’:True
285 })
286 w_equilibrate_model = Worker(equilibrate_model, kwargs={
287 ’steps’:250,
288 ’T_start’:50., # K
289 ’T_stop’:300., # K
290 ’T_step’:0.5, # K
291 ’save_log’:True,
292 ’save_file’:True
293 })
294 # Composite worker:
295 w_minimize_equilibrate_model = Worker((w_minimize_model, w_equilibrate_model))
296 w_call_stride = Worker(call_stride)
297 w_define_loops = Worker(define_loops, kwargs={
298 ’min_size’:7,
299 ’max_gaps’:2
300 })
301 w_create_loop_models = Worker(create_loop_models, kwargs={
302 ’sphere_margin’:0.5, # nm
303 ’loop_num’:LOOP_NUM,
304 ’save_file’:True
305 })
306 # 50000 steps (= 50 ps dynamics) at 300 K:
307 w_md_loop_model = Worker(md_loop_model, kwargs={
308 ’steps’:50000,
309 ’temp’:300, # K
310 ’save_file’:True,
311 ’save_trajectory’:False,
312 ’save_log’:True
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313 })
314 w_combine_loop_models = Worker(combine_loop_models)
315 w_make_refined_model = Worker(make_refined_model, kwargs={
316 ’save_file’:True
317 })
318

319 # initialize Piper instances (i.e. attach functions to runtime)
320 p_create_model = Piper(w_create_model, debug=True)
321 # p_minimize_model = Piper(w_minimize_model, parallel=local_computer,
322 # debug=True)
323 p_equilibrate_model = Piper(w_minimize_equilibrate_model,
324 parallel=local_computer, debug=True)
325 P_call_stride = Piper(w_call_stride, debug=True)
326 p_define_loops = Piper(w_define_loops, debug=True)
327 p_create_loop_models = Piper(w_create_loop_models,
328 debug=False, produce=LOOP_NUM)
329 p_md_loop_model = Piper(w_md_loop_model, debug=True,
330 parallel=local_computer, spawn=LOOP_NUM)
331 p_combine_loop_models = Piper(w_combine_loop_models, debug=True,
332 consume=LOOP_NUM)
333 p_make_refined_model = Piper(w_make_refined_model, debug=True)
334

335 # Create the pipeline and connect pipers:
336

337 # Central pipeline (pipers 1 -> 2 -> 3 -> 6 -> layer-7 -> 8 -> 9 -> 10 in
338 # Figure 5 of the manuscript; ---{6 -> layer-7 -> 8}--- is the produce/
339 # spawn/consume part of the workflow):
340 pipes.add_pipe((
341 p_create_model,
342 #p_minimize_model,
343 p_equilibrate_model,
344 p_create_loop_models,
345 p_md_loop_model,
346 p_combine_loop_models,
347 p_make_refined_model
348 ))
349 # The ’Stride’ branch of the pipeline (pipers 4, 5 in the manuscript):
350 pipes.add_pipe((
351 p_equilibrate_model,
352 P_call_stride,
353 p_define_loops,
354 p_create_loop_models
355 ))
356 # A ’short-circuit’ of the pipeline, jumping from piper 3 --> 9 (i.e.,
357 # no loop refinement, just general equilibration):
358 pipes.add_pipe((
359 p_equilibrate_model,
360 p_make_refined_model
361 ))
362 return pipes
363

364

365 #-------------------------------------------------------------------------------
366 # Stage 3: Execute the pipeline
367 if __name__ == ’__main__’:
368 pipes = pipeline()
369 pipes.start([create_dummy_files(’data/hfq_models.xml’)])
370 pipes.run()
371 pipes.wait()
372 pipes.pause()
373 pipes.stop()
374 print pipes.stats
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3 Some further notes on PaPy

3.1 Platform-independence and installation

The PaPy codebase and its auxiliary toolkits (NuMap, NuBio)were written in CPython (version 2.6), which
is the standard/default, cross-platform implementation of Python. In muchthe same way as PyMOL or other
Python-based software packages, PaPy derives its platform-independence from the facts that(i) Python itself
is platform-independent and(ii) PaPy is written in pure Python (i.e., no special tricks, customizations, add-on
modules, or other dependencies were introduced beyond the defintion of the core Python language). Thus,
although PaPy was developed and tested on several variants of Linux (Ubuntu, Gentoo, Fedora, Arch), the
software can in principle be used on any Python-capable platform (Unix/Linux, Mac, Windows operating
systems); assuming the root cause was PaPy (and not Python-related), we would be happy to address any
incompatibilites discovered by users on non-Linux platforms.

Detailed installation scenarios – ranging from simple to advanced – are provided in the PaPy manual,
including step-by-step instructions for three common Linux distributions (Gentoo, Ubuntu, Fedora). PaPy
is most easily obtained and installedvia the Python Package Index (PyPI), using ‘setuptools’ and the simple
command-line invocation ‘easy_install papy’. The PaPy manual also describes a more advanced
installation scenario, using the Python ‘virtual environments’ facility in order to install PaPy into an insulated
environment, rather than system-wide.

In terms of platform-independence and more advanced usage of PaPy, it is worth noting that direct com-
munication between pipers (to avoid interprocess communication overhead) comes at the cost of platform-
independence, as the operating system must properly support the chosen transmission mechanism. For
instance, communication between processes on a single hostvia Unix pipes is necessarily restricted to
Unix/Linux systems. This stems from an intrinsic, well-known constraint in software engineering: platform–
(in)dependence and advanced functionality are features ofa software system that generally counteract, and
therefore limit, one another. PaPy provides platform-independent alternatives for any such platform-specific
feature (see,e.g., Table 3 of the main text for alternatives to Unix pipes).

3.2 An additional note on the Dagger and Plumber classes

PaPy’sDagger andPlumber classes are core components (Table 2 of the main text) that are conceptually
quite closely related, but that also subtly differ in terms of both low-level (software) implementation and
user-exposed functionality. Briefly,Plumber objects can be viewed as specialDagger objects with extended
functionality: A specificDagger instance defines a PaPy pipeline/workflow in terms of connections between
nodes (Piper objects), but exactly the same workflow (i.e. same nodes, same topology of interconnections
between nodes) can also be constructed as aPlumber object, with the benefit that thePlumber class endows
the pipeline object with methods for user interaction. Derived from PaPy’s even lower-level ‘DictGraph’
class (a dictionary-based data structure for representingarbitrary graphs), theDagger class provides the ba-
sic methods for adding, deleting, and connecting Piper instances and ‘pipes’ (edges that links two specific
Piper nodes). ThePlumber is a subclass of theDagger class that inherits methods fromDagger objects
and can be used as aDagger, but that also extends the functionality of theDagger class by adding meth-
ods for higher-level (run-time) workflow manipulation and interaction –e.g., loading/saving workflows or
starting/stopping/pausing a pipeline. (As detailed in the API, these methods are defined with intuitively
obvious names, such as ‘.stop()’.)

More specific descriptions of the low-level definitions of the Dagger andPlumber classes can be found
in the PaPy manual (pgs 18-21). BothDagger andPlumber are classes within the higher-levelpapy.core
module, and a comparison of their API entries (see Manual) reveals the subtle differences in the properties
and capabilities of these two classes. Finally, to concretely illustrate the differences between theDagger
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andPlumber classes, we also provide a toy pipeline in the ‘doc/examples’ directory of the source-code
distribution, with the same directed acyclic graph (i.e., same pipeline) implemented as either aDagger
(‘hello_dagger.py’) instance or aPlumber instance (‘hello_plumber.py’). An example of a
more complexPlumber-instantiated workflow is the above (§2.3above) MD loop-refinement pipeline.

3.3 PaPy in the context of cloud computing

It should, in principle, be feasible to deploy PaPy workflowsin cloud-computing environments without
any modifications to the current PaPy codebase. This is because, at the level of PaPy, compute resources
are highly abstracted (asNuMap objects) such that a pipeline can be executed using any configuration of
resources – local desktops, remote workstations, or a mixture thereof. As described in the text, PaPy employs
RPyC to distribute a pipeline across networked computers. Though RPyC is not officially ‘advertised’ as a
tool for cloud computing, it is meant as “a library for remote procedure calls, clustering and distributed-
computing.” (See the RPyC homepage athttp://rpyc.wikidot.com). Indeed, RPyC’s basic goal of providing
“ remote machines as if they were local resources” (http://www.ibm.com/developerworks/linux/library/l-rpyc) – i.e.,
virtualizing resources – can be considered as cloud computing (the terminology is still somewhat fuzzy and
non-standardized). In terms of PaPy and its relationship toRPyC, we note that the cloud should be readily
accessible by employing a Python-aware service provider such as PiCloud (http://www.picloud.com). The
PiCloud service essentially offers a high-level wrapper that uses Amazon Web Services’Elastic Compute
Cloud (EC2) as the underlying compute resource. PiCloud suppliesusers with a Python library (‘cloud’) for
seamless integration with another code-base (e.g., a user’s PaPy-enabled workflow). Under such a scheme,
PaPy pipelines would be rendered cloud-compatible by simply importing the ‘cloud’ module and using it to
dispatch the PaPy workflow, as in the following code snippet:

def worker_function(inbox, param):
# ordinary definition of PaPy worker function...

def picloud_function():
# makes something using inbox

cloud.call(picloud_function)

Similarly, PaPy workflows should also be cloud-compatible with other service providers (e.g., the lower-
level EC2 itself), without any necessary modifications to PaPy. A key consideration would be that PaPy
assumes data are transmitted across astableinternet connection (e.g., on LANs, such as in academic labs
or a collection of workstations in a department) without network time-outs, firewall blocks, intermittency
problems,etc. In this regard, we note that PiCloud assures a “highly robust computing environment” with
“99.9% availability” (see the PiCloud website).

4 A brief, comparative overview of PaPy and K NIME

Although a complete analysis of the similarities and differences between PaPy and the many existing WMS
(and WMS-related) software packages lies beyond the scope of this report, we note that currently available
WMS programs (free and commercial) have been recently reviewed (see main text); for instance, Tiwari &
Sekhar’s treatment (5), which emphasizes workflow suites from a biosciences perspective, includes useful
summaries of workflow solutions and workflow-compatible third-party software (existing programs that are
readily integrated as nodes in different workflow suites). As introduced in theBackgroundsection of our
main text, workflow solutions can be categorized and classified based upon several different criteria – their
feature sets and scope of functionality, target application domains, graphicalversusscript-based workflow
composition,etc. From a user perspective, a most basic distinction is in the intended purpose/scope of the
workflow software, with many WMS systems serving as all-inclusive, highly-integrated suites with high-
level feature sets (‘heavyweight’ solutions). In contrast, ‘lightweight’ solutions (libraries, toolkits) provide
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neither as extensive a set of functionality (at least not out-of-the-box) nor visual environments for workflow
composition and enactment, but they do offer the benefits of being (i) quite flexible and applicable in a
variety of problem domains,(ii) more easily mastered by new users, and(iii) more transparent in operation,
so performance can be more readily optimized and troubleshooting can be more easily pursued. Thus, with
scientific workflow solutions it is not the case that “one sizefits all” (6), and different approaches – heavy-
weight suites, lightweight libraries – are more naturally suited to different purposes. Whereas PaPy belongs
to the class of lightweight toolkits for workflow/pipeline construction (of which there are not many available
packages), KNIME is an example of a comparably heavyweight solution, originally inspired by needs arising
in machine learning and data-mining workflows (7). KNIME and PaPy differ in rather fundamental ways – in
terms of their intended purposes and scope, their feature sets, and their low-level software implementations.

KNIME, which is written in Java and implemented as an Eclipse plug-in (7), is a feature-rich, all-encom-
passing workflow/pipelining engine that emphasizes a graphical approach to workflow creation and execu-
tion. In the words of its authors (7), KNIME is “a modular data analysis environment” that was “designed
as a teaching, research and collaboration platform”. PaPy, in contrast, serves far more modest purposes:
Written in Python using functional programming paradigms,PaPy provides a much lower-level, lightweight
toolkit. Users can flexibly employ PaPy, together with theirown data-analysis and data-processing code
(Python or otherwise), in order to distribute calculationslocally and/or remotely, improve their data-handling
and provenance (have a record of the exact data-processing pipeline), and so on (see main text). Perhaps
most important in practical terms, PaPy can be learned by users already familiar with basic programming (at
the level of bioinformatic scripting) with relatively minimal effort; starting with the examples we provide,
such users can begin creating distributed data-processingpipelines within a day, and can easily adapt their
processing pipelines for subsequent projects. Starting with no prior experience with workflow editors and
environments, a greater time investment may be required forsuch users to reach the same level of mastery
with a heavyweight, all-encompassing suite such as TAVERNA or KNIME. Thus, considered in terms of
the usual trade-offs between functionality/scope/simplicity, both types of systems – lightweight (PaPy) and
heavyweight (KNIME, TAVERNA, etc.) – exhibit relative strengths and weaknesses, and can be viewed as
complementary approaches that serve somewhat different purposes.

Beyond major differences in scope and feature-set, PaPy andheavyweight WMS suites such as KN-
IME differ at other levels too. In terms of low-level software implementation, PaPy and KNIME employ
fundamentally different execution models: Whereas PaPy nodes (‘pipers’) process continuous streams of
data-items (see text), each discrete node in a KNIME workflow processes an entire ‘chunk’ of data before
forwarding the resultant data to successive (downstream) nodes (8). In addition, whereas PaPy treats inter-
mediate data as serialized Python objects (which can be arbitrarily complex, so long as they are valid data
structures), KNIME wraps all inter-node data (i.e. as they traverse the data-flow) as customkey/value(table-
like) data structures. KNIME and PaPy also differ substantially in their approach to distributing pipelines
for execution across a network of computers (see text for PaPy’s approach), with much recent effort having
been devoted to the development of a KNIME ‘Grid Engine’ for distributed processing (9). Finally, because
both KNIME and PaPy ultimately treat the problem of data-processing using a pipeline approach, they share
certain similarities in terms of load-balancing and performance tuning. For instance, the factors influencing
the value to which PaPy’s ‘stride’ parameter is set (namely, the memory/speed-up trade-off) are mirrored in
the fact that “a suitable balance between the size and the number of chunks” is important in KNIME too (8).
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